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Problem:Modern DNNs are trained towards overconfidence.

Above figure shows a joint density plot of accuracy vs confidence
(captured by the winning softmax score) on the CIFAR-100
validation set at different training epochs for the VGG-16 deep
neural network.

In regular training, the DNN moves from under-confidence, at the
beginning of training, to overconfidence at the end. A well-calibrated
classifier would have most of the density lying on the x = y gray line.

Towards the end of training, the DNNs are typically very
overconfident i.e., the predicted scores overestimate the
likelihood of correctness.

One of the factors that contribute to this is that most modern DNNs,
when trained for classification in a supervised learning setting, are
trained using one-hot encoded labels that have all the probability mass
in one class.

The training labels are zero-entropy signals that always express
certainty about the input. The DNN is thus, in some sense, trained to
become overconfident.

Mixup, introduced in (Zhang et al 2017) is based on the principle of
vicinal risk minimization – the classifier is trained not only on the
training data but also in the vicinity of each sample. Given two
randomly selected images xi and xj, mixup combines them as follows:

This has the effect of the empirical Dirac delta distribution

being replaced with the  empirical  vicinal distribution. The vicinal 
samples are generated as above, and during training minimization is 
performed on empirical vicinal risk:
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Pairs of images are convexly combined in pixel space. Depending on
the mixing parameter, the resulting image is usually closer to one of
the two images in the pairs.

But more importantly, the training labels of the original images are also
convexly combined. The training label for the above mixed-up image
now has probability mass in two classes.

The entropy of each original training label is zero. The entropy of the
mixed-up training labels are a function of the distribution from which
the mixing parameter is sampled. In practice, the sampling
distribution is usually a symmetric Beta distribution.

�

Entropy Distribution  of Training 
Labels in Mixup

Shown above is the entropy distribution of training labels as a function 
of the alpha parameter of the Beta(alpha, alpha) distribution from 
which mixing parameter    is sampled.

Question: Will this label smoothing effect of mixup lead to a better 
calibrated DNN?

�

Since mixup produces smoothed labels over mixtures of inputs, we
compare the calibration performance of mixup to two other label
smoothing techniques:

• epsilon-label smoothing described in [Szegedy et al] where the
one-hot encoded training signal is smoothed by distributing an
epsilon mass over the other (i.e., non ground-truth) classes.

• We also compare the performance of mixup against the entropy-
regularized loss (ERL) in [Pereyra et al] that discourages the
neural network from being over-confident by penalizing low-entropy
distributions.

Our baseline comparison is regular training where no label smoothing
or mixing of features is applied (no-mixup).

Calibration Metrics
We measure the calibration of the network using Expected
Calibration Error.

Let Bm be the set of samples whose prediction scores (the
winning softmax score) fall into bin m. The accuracy and
confidence of Bm are defined as:

The Expected Calibration Error is then defined as

In high-risk applications, confident but wrong predictions can be 
especially harmful; thus we also define an additional calibration 
metric -- the Overconfidence Error (OE)-- as follows
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Merely mixing features does not give the same calibration benefit. The 
label smoothing aspect of mixup has an important and beneficial effect 
on calibration.

Conclusion: Mixup significantly improves calibration 
and predictive uncertainty for DNNs. 
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The original mixup paper worked with images and sound data. We are 
one of the first to extend the idea to the NLP domain, where the convex 
mixing is done in the embedding layers. 
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